Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.04.06.22272763

ABSTRACT

Anti-spike IgG binding antibody, anti-receptor binding domain IgG antibody, and pseudovirus neutralizing antibody measurements four weeks post-vaccination were assessed as correlates of risk of moderate to severe-critical COVID-19 outcomes through 83 days post-vaccination and as correlates of protection following a single dose of Ad26.COV2.S COVID-19 vaccine in the placebo-controlled phase of ENSEMBLE, an international, randomized efficacy trial. Each marker had evidence as a correlate of risk and of protection, with strongest evidence for 50% inhibitory dilution (ID50) neutralizing antibody titer. The outcome hazard ratio was 0.49 (95% confidence interval 0.29, 0.81; p=0.006) per 10-fold increase in ID50; vaccine efficacy was 60% (43, 72%) at nonquantifiable ID50 (< 2.7 IU50/ml) and rose to 89% (78, 96%) at ID50 = 96.3 IU50/ml. Comparison of the vaccine efficacy by ID50 titer curves for ENSEMBLE-US, the COVE trial of the mRNA-1273 vaccine, and the COV002-UK trial of the AZD1222 vaccine supported consistency of the ID50 titer correlate of protection across trials and vaccine types.


Subject(s)
COVID-19
3.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.03.28.486152

ABSTRACT

While humoral immune responses to infection or vaccination with ancestral SARS-CoV-2 have been well-characterized, responses elicited by infection with variants are less understood. Here we characterized the repertoire, epitope specificity, and cross-reactivity of antibodies elicited by Beta and Gamma variant infection compared to ancestral virus. We developed a high-throughput approach to obtain single-cell immunoglobulin sequences and isolate monoclonal antibodies for functional assessment. Spike-, RBD- and NTD-specific antibodies elicited by Beta- or Gamma-infection exhibited a remarkably similar hierarchy of epitope immunodominance for RBD and convergent V gene usage when compared to ancestral virus infection. Additionally, similar public B cell clones were elicited regardless of infecting variant. These convergent responses may account for the broad cross-reactivity and continued efficacy of vaccines based on a single ancestral variant.


Subject(s)
Tumor Virus Infections
4.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.02.17.22271138

ABSTRACT

Viral infections can have profound and durable functional impacts on the immune system. There is an urgent need to characterize the long-term immune effects of SARS-CoV-2 infection given the persistence of symptoms in some individuals and the continued threat of novel variants including the recent rapid acceleration in infections. As the majority of COVID-19 patients experienced mild disease, here we use systems immunology approaches to comparatively assess the post-infection immune status (mean: 151 [5th - 95th percentile: 58 - 235] days after diagnosis) and subsequent innate and adaptive responses to seasonal influenza vaccination (as an "immune challenge") in 33 previously healthy individuals after recovery from mild, non-hospitalized COVID-19, as compared to 40 age- and sex-matched healthy controls with no history of COVID-19. Sex-specific, temporally stable shifts in signatures of metabolism, T-cell activation, and innate immune/inflammatory processes suggest that mild COVID-19 can establish new post-infection immunological set-points. COVID-19-recovered males had an increase in CD71hi B-cells (including influenza-specific subsets) before vaccination and more robust innate, influenza-specific plasmablast, and antibody responses after vaccination compared to healthy males. Intriguingly, by day 1 post-vaccination in COVID-19-recovered subjects, the expression of numerous innate defense/immune receptor genes (e.g., Toll-like receptors) in monocytes increased and moved away from their post-COVID-19 repressed state toward the pre-vaccination baseline of healthy controls, and these changes tended to persist to day 28 in females, hinting that the acute inflammatory responses induced by vaccination could partly reset the immune states established by prior mild COVID-19. Our study reveals sex-dimorphic immune imprints and in vivo functional impacts of mild COVID-19 in humans, suggesting that prior COVID-19 could change future responses to vaccination and in turn, vaccines could help reset the immune system after COVID-19, both in an antigen-agnostic manner.


Subject(s)
COVID-19
5.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.02.03.479037

ABSTRACT

SARS-CoV-2 Omicron is highly transmissible and has substantial resistance to antibody neutralization following immunization with ancestral spike-matched vaccines. It is unclear whether boosting with Omicron-specific vaccines would enhance immunity and protection. Here, nonhuman primates that received mRNA-1273 at weeks 0 and 4 were boosted at week 41 with mRNA-1273 or mRNA-Omicron. Neutralizing antibody titers against D614G were 4760 and 270 reciprocal ID50 at week 6 (peak) and week 41 (pre-boost), respectively, and 320 and 110 for Omicron. Two weeks after boost, titers against D614G and Omicron increased to 5360 and 2980, respectively, for mRNA-1273 and 2670 and 1930 for mRNA-Omicron. Following either boost, 70-80% of spike-specific B cells were cross-reactive against both WA1 and Omicron. Significant and equivalent control of virus replication in lower airways was observed following either boost. Therefore, an Omicron boost may not provide greater immunity or protection compared to a boost with the current mRNA-1273 vaccine.

6.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.10.10.21264827

ABSTRACT

Background: While Coronavirus disease 2019 (Covid-19) vaccines are highly effective, breakthrough infections are occurring. Booster vaccinations have recently received emergency use authorization (EUA) for certain populations but are restricted to homologous mRNA vaccines. We evaluated homologous and heterologous booster vaccination in persons who had received an EUA Covid-19 vaccine regimen. Methods: In this phase 1/2 open-label clinical trial conducted at ten U.S. sites, adults who received one of three EUA Covid-19 vaccines at least 12 weeks prior to enrollment and had no reported history of SARS-CoV-2 infection received a booster injection with one of three vaccines (Moderna mRNA-1273 100-mcg, Janssen Ad26.COV2.S 5x1010 virus particles, or Pfizer-BioNTech BNT162b2 30-mcg; nine combinations). The primary outcomes were safety, reactogenicity, and humoral immunogenicity on study days 15 and 29. Results: 458 individuals were enrolled: 154 received mRNA-1273, 150 received Ad26.CoV2.S, and 154 received BNT162b2 booster vaccines. Reactogenicity was similar to that reported for the primary series. Injection site pain, malaise, headache, and myalgia occurred in more than half the participants. Booster vaccines increased the neutralizing activity against a D614G pseudovirus (4.2-76-fold) and binding antibody titers (4.6-56-fold) for all combinations; homologous boost increased neutralizing antibody titers 4.2-20-fold whereas heterologous boost increased titers 6.2-76-fold. Day 15 neutralizing and binding antibody titers varied by 28.7-fold and 20.9-fold, respectively, across the nine prime-boost combinations. Conclusion: Homologous and heterologous booster vaccinations were well-tolerated and immunogenic in adults who completed a primary Covid-19 vaccine regimen at least 12 weeks earlier.


Subject(s)
Pain , Headache , Severe Acute Respiratory Syndrome , Breakthrough Pain , Myalgia , COVID-19
7.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.17.21259027

ABSTRACT

AZD1222 (ChAdOx1 nCoV-19), a replication-deficient simian adenovirus-vectored vaccine, has demonstrated safety, efficacy, and immunogenicity against coronavirus disease 2019 (COVID-19) in clinical trials and real-world studies. We characterized CD4+ and CD8+ T-cell responses induced by AZD1222 vaccination in peripheral blood mononuclear cells (PBMCs) from 280 unique vaccine recipients aged 18-85 years who enrolled in the phase 2/3 COV002 trial. Total spike-specific CD4+ T cell helper type 1 (Th1) and CD8+ T-cell responses were significantly increased in AZD1222-vaccinated adults of all ages following two doses of AZD1222. CD4+ Th2 responses following AZD1222 vaccination were not detected. Furthermore, AZD1222-specific Th1 and CD8+ T cells both displayed a high degree of polyfunctionality in all adult age groups. T-cell receptor (TCR) {beta} ; sequences from vaccinated participants mapped against TCR sequences known to react to SARS-CoV-2 revealed substantial breadth and depth across the SARS-CoV-2 spike protein for the AZD1222-induced CD4+ and CD8+ T-cell responses. Overall, AZD1222 vaccination induced a robust, polyfunctional Th1-dominated T-cell response, with broad CD4+ and CD8+ T-cell coverage across the SARS-CoV-2 spike protein.


Subject(s)
COVID-19
8.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.13.439482

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of a global pandemic that has led to more than 2.8 million deaths worldwide. Safe and effective vaccines are now available, including Moderna's COVID-19 vaccine (mRNA-1273) that showed 94% efficacy in prevention of symptomatic COVID-19 disease in a phase 3 clinical study. mRNA-1273 encodes for a prefusion stabilized full length spike (S) protein of the Wuhan-Hu-1 isolate. However, the emergence of SARS-CoV-2 variants has led to concerns of viral escape from vaccine-induced immunity. Several emerging variants have shown decreased susceptibility to neutralization by vaccine induced immunity, most notably the B.1.351 variant, although the overall impact on vaccine efficacy remains to be determined. Here, we present the initial evaluation in mice of two updated COVID-19 mRNA vaccines designed to target emerging SARS-CoV-2 variants: (1) monovalent mRNA-1273.351 encodes for the S protein found in the B.1.351 lineage and (2) mRNA-1273.211 comprising a 1:1 mix of mRNA-1273 and mRNA-1273.351. Both vaccines were evaluated as a 2-dose primary series in mice; mRNA-1273.351 was also evaluated as a booster dose in animals previously vaccinated with 2-doses of mRNA-1273. The results demonstrated that a primary vaccination series of mRNA-1273.351 was effective at increasing neutralizing antibody titers against the B.1.351 lineage, while mRNA-1273.211 was most effective at providing broad cross-variant neutralization in mice. In addition, these results demonstrated a third dose of mRNA-1273.351 significantly increased both wild-type and B.1.351-specific neutralization titers. Both mRNA-1273.351 and mRNA-1273.211 are currently being evaluated in additional pre-clinical challenge models and in phase 1/2 clinical studies.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
9.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.02.25.432969

ABSTRACT

The emergence of highly transmissible SARS-CoV-2 variants of concern (VOC) that are resistant to therapeutic antibodies highlights the need for continuing discovery of broadly reactive antibodies. We identify four receptor-binding domain targeting antibodies from three early-outbreak convalescent donors with potent neutralizing activity against 12 variants including the B.1.1.7 and B.1.351 VOCs. Two of them are ultrapotent, with sub-nanomolar neutralization titers (IC50 <0.0006 to 0.0102 g/mL; IC80 < 0.0006 to 0.0251 g/mL). We define the structural and functional determinants of binding for all four VOC-targeting antibodies, and show that combinations of two antibodies decrease the in vitro generation of escape mutants, suggesting potential means to mitigate resistance development. These results define the basis of therapeutic cocktails against VOCs and suggest that targeted boosting of existing immunity may increase vaccine breadth against VOCs.

10.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.05.425420

ABSTRACT

To understand the diversity of immune responses to SARS-CoV-2 and distinguish features that predispose individuals to severe COVID-19, we developed a mechanistic, within-host mathematical model and virtual patient cohort. Our results indicate that virtual patients with low production rates of infected cell derived IFN subsequently experienced highly inflammatory disease phenotypes, compared to those with early and robust IFN responses. In these in silico patients, the maximum concentration of IL-6 was also a major predictor of CD8+ T cell depletion. Our analyses predicted that individuals with severe COVID-19 also have accelerated monocyte-to-macrophage differentiation that was mediated by increased IL-6 and reduced type I IFN signalling. Together, these findings identify biomarkers driving the development of severe COVID-19 and support early interventions aimed at reducing inflammation.


Subject(s)
COVID-19 , Inflammation
11.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.05.425516

ABSTRACT

Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) is a positive-strand RNA virus. Viral genome is capped at the 5'-end, followed by an untranslated region (UTR). There is poly-A tail at 3'-end, preceded by an UTR. Self-interaction between the RNA regulatory elements present within 5'- and 3'-UTRs as well as their interaction with host/virus-encoded proteins mediate the function of 5'- and 3'-UTRs. Using RNA-protein interaction detection (RaPID) assay coupled to liquid chromatography with tandem mass-spectrometry, we identified host interaction partners of SARS-CoV-2 5'- and 3'-UTRs and generated an RNA-protein interaction network. By combining these data with the previously known protein-protein interaction data proposed to be involved in virus replication, we generated the RNA-protein-protein interaction (RPPI) network, likely to be essential for controlling SARS-CoV-2 replication. Notably, bioinformatics analysis of the RPPI network revealed the enrichment of factors involved in translation initiation and RNA metabolism. Lysosome-associated membrane protein-2a (Lamp2a) was one of the host proteins that interact with the 5'-UTR. Further studies showed that Lamp2 level is upregulated in SARS-CoV-2 infected cells and overexpression of Lamp2a and Lamp2b variants reduced viral RNA level in infected cells and vice versa. In summary, our study provides an useful resource of SARS-CoV-2 5'- and 3'-UTR binding proteins and reveal the antiviral function of host Lamp2 protein.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome
12.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.05.425508

ABSTRACT

Background: When a virus that has grown in a nonhuman host starts an epidemic in the human population, human cells may not provide growth conditions ideal for the virus. Therefore, the invasion of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which is usually prevalent in the bat population, into the human population is thought to have necessitated changes in the viral genome for efficient growth in the new environment. In the present study, to understand host-dependent changes in coronavirus genomes, we focused on the mono- and oligonucleotide compositions of SARS-CoV-2 genomes and investigated how these compositions changed time-dependently in the human cellular environment. We also compared the oligonucleotide compositions of SARS-CoV-2 and other coronaviruses prevalent in humans or bats to investigate the causes of changes in the host environment. Results: Time-series analyses of changes in the nucleotide compositions of SARS-CoV-2 genomes revealed a group of mono- and oligonucleotides whose compositions changed in a common direction for all clades, even though viruses belonging to different clades should evolve independently. Interestingly, the compositions of these oligonucleotides changed towards those of coronaviruses that have been prevalent in humans for a long period and away from those of bat coronaviruses. Conclusions: Clade-independent, time-dependent changes are thought to have biological significance and should relate to viral adaptation to a new host environment, providing important clues for understanding viral host adaptation mechanisms.


Subject(s)
Coronavirus Infections
13.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.10.05.20206664

ABSTRACT

Background: Quantifying antibody reactivity to SARS-CoV-2 antigens may help understand its effect on COVID-19 severity at the population level. This antibody reactivity may be particularly prevalent among childcare providers, including pediatric health care workers (HCW) who may be more exposed to circulating coronaviruses. Methods: Cross-sectional study that included adults in the Vancouver area in British Columbia (BC), Canada, between May 17 and June 19, 2020. A novel 10-plex antibody assay (IgG) was used to measure antibody reactivity against the spike protein from circulating coronaviruses (229E, NL63, OC43, and HKU1), SARS-CoV, and four SARS-CoV-2 antigens. Seroreactivity from previous viral exposure was ascertained using this assay, and by measuring total SARS-CoV-2 IgG/M/A antibodies against a recombinant spike (S1) protein using a commercial CLIA assay. Findings: Among 276 participants (71% HCW), three showed evidence of direct viral exposure, yielding an adjusted seroprevalence of 0.6% [95%CI 0.2 to 3.1%], with no difference between HCW and non-HCW, or between paediatric and adult HCW. Among the remaining 273 unexposed individuals, 7.3% [95%CI 4.5% to 11.1%], 48.7 [95%CI 42.7% to 54.8%] and 82.4% [95%CI 77.4% to 86.7%] showed antibody reactivity against SARS-CoV-2 RBD, N or Spike proteins, respectively. This reactivity was evenly distributed as a function of age, sex or between paediatric and adult HCW, and partly correlated with reactivity to circulating coronaviruses (Spearman; range: 0.147 to 0.513 for significant correlation after false-discovery rate adjustment at 5%). Interpretation: A substantial proportion of individuals in this population showed antibody reactivity against SARS-CoV-2 antigens despite low serological evidence of SARS-CoV-2 exposure.


Subject(s)
Poult Enteritis Mortality Syndrome , Severe Acute Respiratory Syndrome , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL